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In [9] a class of continued fractions called Laurent fractions were introduced,
and it was shown that there is a one-to-one mapping between all Laurent fractions
and all double sequences of real numbers {c,:n=0, +1, +2,..} satisfying
HY %0, Hy o #0,m=0, 1,2, ... (H\ are the Hankel determinants associated
with the double sequence.) The mapping is defined through the concept of
correspondence between the continued fraction and the series 3% | —c_,z* at
z=0, and the series "7 , ¢,z ¥ at z = o0. The subclass of contractive Laurent frac-
tions is mapped onto those double sequences which satisfy "' >0, H, > >0,
m=0,1,2,... The main results of this paper are the following: (i) A sequence
{4,(z)} of discs connected with a contractive Laurent fraction is nested (for each z
where Im z #0). (ii) The intersection (., 4,(z) is either a single point for every z
or a closed disc for every z. (iii) General approximants F,(z, 7} associated with a
contractive Laurent fraction have partial fraction decompositions of the form

Flz,t)=3"_, A/{(z+1t,), where t,€R, 4,>0. © 1989 Academic Press, Inc.

1. INTRODUCTION

Let {c,:n=0, 1, 2, ..} be a sequence of real numbers. The Hankel derer-
minants H{®' are defined for n=0, 1, 2, ... as [ollows:

Cyp Cruit Chnvk—1
Crin :

HP=1, Hp=| " : k=123, ...
Chg ol rrrrnemnnnnns Cpoiok_2

When {c,:0, +1, +2,..} is a double sequence, the Hankel determinants
are defined as above for n=0, +1, +2, ....

With a given (simple) sequence {c, } we associate a formal power series
¥ _ockz %, and with a given double sequence {c,} we associate two
formal power series > ,c,z % and 3’ | —c_,z"
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CONTRACTIVE LAURENT FRACTIONS
A continued fraction

0‘1(2) uy(z)  as{z)

is said to correspond to the series 3 7_, ¢,z at z= o if formal power
series expansions of the following form are valid for every & (we write £, {z}
for the kth approximant of the continued fraction},

e
flz2)= >z P=czm T 4

p=0

where yu, — o0 when k - .

The continued fraction is said to correspond to the series >, ¢iz
at z=o0 and to the series 3.7, —c_,z* at z=0 if formal power series
expansions of the following form are valid for every %,

[

_ z Cp27p=CZ~"“‘+l)+

vh
)+ Y e, ZP=d

p=1
where u, — ¢, v, » o0 when k — oo,
A J-fraction is a continued fraction of the form

g2 8> £3
z+h—z+h,—z+hy—

1) gk#OforkZI,Z,_"_

It is called a real J-fraction if g, >0 for all k. The concept of correspon-
dence induces a one-to-one mapping between all J-fractions and ali
(simple) definite real sequence {c,}, ie., real sequences satisfying the
conditicn

H®#0, k=012, ...

The real J-fractions are mapped onto the positive definite sequences. Le.,
the sequences where

H®>0, k=0,1,2....

For more details on these correspondence results, see, e.g., [ 1,5, 16].

For every complex number z outside the real axis we set s.(w)=
w2 (Bez)+w), S(w)=s,05,>---25(w). Then the transformation
w - S.{w) maps the real axis onto a circle /,{z) bounding a disc 4,(z}. If

640.56°2-2
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the continued fraction qu o2 (z)/Br(z) is a real J-fraction, then the
sequence {4,(z )} of d1scs is nested ie., Ak+1( Y= A,(z) for all k. The
intersection 4 (z)= ., 4,(z) is a disc or a single point, and it can be
shown that elther Aw( Yis a dlsc for all z (the limit circle case) or a point
for all z (the limit point case). General approximants F,(z, 7)=S.(z, 7),
teR, have partial fraction decompositions of the form F,(z,1)=
zy*_ A J(z+1,), where £, eR, 4,>0.

The Hamburger moment problem (HMP) can be formulated as follows:
Given a sequence {c,:n=0,1,2,..) of real numbers, find conditions for
the existence of a distribution function ¥ on the real line (i.c., a bounded,
non-decreasing function with infinitely many points of increase) such that
fo, (=" dy(t)=c,, n=0,1,2, ... A necessary and sufficient condition
for the problem to have a solution is that the sequence {c,} is positive
definite. The series 3, ¢,z * then has a corresponding J-fraction, and
this is real, so that the sequence {4,(z)} is nested and the limit circle case
or the limit point case occurs. The HMP has a unique solution if and only
if the limit point case obtains for the sequence.

For more information on these results, see, e.g., 1,5, 167.

The denominators of the approximants of the real J-fraction form a
system of polynomials which is orthogonal with respect to the
corresponding sequence {c,}. The nestedness of the sequence {4,(z)} and
the characterization of unique solvability of the HMP in terms of the limit
circle-limit point situation can also be obtained by using properties of
orthogonal systems of polynomials; see, e.g., [1].

In [9] we introduced the concept of a Laurent fraction (for definition see
Section 2). We showed that the concept of correspondence at z= oo and at

=0 induces a one-to-one mapping between all Laurent fractions and all
definite real double sequences {c¢,:n=0, +1, +2, ..}, ie., all real double
sequences satisfying the condition

H{- 2 #0,  HG#0, m=0,1,2, ...

2m+1

A subclass of the Laurent fractions consisting of the contractive Laurent
fractions (for definition see Section 2) is mapped onto the class of positive
definite double sequences, i.e., the sequences where

H(2;2m)>0, H{— 2m)>0 m=0’ 1, 2,

2m+1

By a general T-fraction we mean a continued fraction of the form

Fz F,z Fyz
14Gz4+14+G,z+ 14+ Gz +

, F,.#0, G, #0 for k=12, ...



CONTRACTIVE LAURENT FRACTIONS 137

It is called an APT-fraction if F,,,_F,,,>0, F,,, G,,,_, >0 for all m {cf.
[4]). Every general T-fraction is equivalent to a non-singular Laurent frac-
tion (for definition of non-singularity see Section 2} and vice versa. Every
APT-fraction is equivalent to a contractive non-singular Laurent fraction
and vice versa. (For the concept of equivalence of continued fractions, see,
e.g, 15])

It has been known the last few years that the concept of correspondence
at z=oc and at z=0 induces a one-to-one mapping between all general
7-fractions and all definite double sequences {c,} which alsc satisfy the
condition

HGm=1is(, H{ ;=20  for m=1,2,...
The APT-fractions are mapped onto the positive definite sequences which
also satisfy the same condition

HL Gm=1) 0, H, Bm=th=£0 for m=1,2, ...
Correspondence results for general T-fractions can also be formulated in
terms of the closely related M-fractions

F, F,z Fiz
1+Gz4+ 14+ Gz 4+ 14+ G324 ---

introduced in [7,8]. For more information on general 7-fractions {or
M-fractions), in particular APT-fractions, and correspondence resuits at
=00 and at z=0, see, e.g, [2,4-8, 15].

It has also recently been shown that when the continued fracticn
K7, au(z)/Be(z) is an APT-fraction, then a corresponding sequence
{4,(z)} of discs is nested, and either the limit point case or the limit circle
case obtains (i.e., the intersection 4 . (z) is either a point for all = or a disc
for all z); see [27]. General approximants F,(z, 7), T € R, associated with the
APT-fraction have partial fraction decomposition of the form F (z.7}=
Yk A/(z+1,), where r,eR, 1,>0; see [2].

The strong Hamburger moment problem (SHMP) may be formulated as
follows: Given a double sequence {c,:n=0, +1, +2, ..} of real numbers,
find conditions for the existence of a distribution function s on the real line
such that {*_(—0)"dy(t)=c,, n=0, £1, +2,... In the non-singular
case, ie., in the case when the series Y% ¢,z “and 3% | —c_,z* corres-
pond to an APT-fraction, it was proved by continued fraction methods in
[2] that a necessary and sufficient condition for the SHMP to have a
solution is that the sequence {c,} is positive definite. Furthermore it was
shown that the problem has a unique solution if and ouly if the limit point
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case obtains. Both the limit point case and the limit circle case do actually
occur; see [12, 137].

The contractive Laurent fractions are connected with orthogonal
Laurent polynomials in the same way as real J-fractions are connected with
orthogonal polynomials. Orthogonal Laurent polynomials can be used
directly to obtain existence and uniqueness results for the SHMP in the
general case; see [3, 11, 137,

In a forthcoming paper [10] we show that such existence and uni-
queness results for the SHMP in the general case also can be obtained by
continued fraction methods alone. Properties of contractive Laurent frac-
tions discussed in this paper are needed for such a continued fractions
treatment of the problem. However, the results of this paper may be of
some interest in themselves, and in the arguments we have no recourse to
the fact that contractive Laurent fractions correspond to series determined
by (positive definite) double sequences. Thus there are no further references
to the double sequences {c,} or the series 32 ¢,z *and ¥ | —c_,2*
in this paper.

The main results we are going to prove are:

(1) A sequence {4,(z)} of discs connected with a contractive
Laurent fraction is nested.

(2) Either the limit point case or the limit circle case occurs
(independently of z).

(3) General approximants F,(z,t) associated with a contractive
Laurent fraction have partial fraction decompositions of the form
Flz,t)=2zX" | i,/(z+¢,), where ¢,eR, 4,>0.

For definitions and basic properties concerning continued fractions we
refer the reader to [5].

2. PRELIMINARIES

Let S be a subsequence of the sequence N={0,1,2,3,..} of non-
negative integers, with the property that no two consecutive elements of N
belong to S. We call the elements of S singular indices, and the elements of
N-S non-singular indices. We denote by T the set of all triples of
consecutive non-singular indices (i.e., triples of non-singular indices where
there are no non-singular indices in between).

For every non-singular index » an ordered pair (a,,b,)=(a,(z), b,(z))
(where z is an arbitrary complex number different from zero) is defined in
the following way:
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L;. For every non-singular index #» there is given a real number
v,#0 and vo=1

L. For every non-singular index » there is given a real number ¢,,.
where ¢, =0, g,%0 for n£0.

L. For every singular index » there is given a real number w,.
The complex numbers a,, b, are given as follows:

L. as.,=qsms bru=102,+(1/05,, 1}z, when (2m, 2m—1,2m—2}e T

La =Gz, bapy="12, +(1/vs,, )z, when (2m,2m—1,2m—3;e T

Ly @un=qsm Pam = (Vo /Usn_»)2 '+, | + 2z, when {2m, 2m — 2,
2m—4)eT.

L4' a2m = quZ* me = (UZm/,UZmA—l)Z* ! + wzmAi +:ﬁ ‘Nhen (217’1, 2"” - 2‘%
2m—3)eT.

S DT ,

LS' a2m+l=q2m+la b2m+1=(1//l)2nz)4 +t’2m+1* Wheﬂ (2771-1-—1.2:’?!.

2m—1)eT.
1 (1 S .

L&' a2m+2=q2m+l- ’ b2m+1_(1/vlm)—' +1‘2m+lﬁ When (27714—1.
2m, 2m—2)eT.

L., «a = b =zt 4w, +iv ‘v }-, when

7 2m+ 1 q2m+l’ 2m+1 < 2m Won+ 1/ 0m— 1= Y

(2m-+ 1, 2m—1,2m—3)eT.

L,—1 _ -1 I, R ; - A .
LB' Qoms 1 = Gom+12 5 b2m+l -~ + ““2m+ (L2m+lv’vlmfl)"$ V\rhefi
(2m+1, 2m—1,2m—2)eT.

{We consider #= —1 as a non-singular index in these formulas.)

Let {n,:k=0,1,2,..} =N—S be the sequence of non-singular indices.
We write o =, (z)=a,(z), Br=Pilz)=b,(z) for k=1,2,3,... We note
that o, #0 for every k. Therefore {(ay, Bc):k=1,2,..} is the sequence of
elements of a continued fraction K7_, (o,(z)/B(z})). A continued fraction
obtained in this way we call a Laurent fraction. We call a Laurent fraction
non-singular if all indices are non-singular.

Let 4,(z} and B,(z) denote the numerator and denominator of the kth
approximant f,(z) of this continued fraction. Then 4,(z) and B,{(z) satisfy
the following recursion formulas:

A(z)=B A ((2)+ oA, 5(2) for k=1,2,.,4_,=1, 4,=0, )
{
B(z)=8:B,_((2)+a,B,_,(2) for k=1,2,., B_,=0, By=1

[

1)

We note that 4, =¢,, B,=z"'4uv,if n,=1 (in view of L5 and (2.1), while
Ay=g,z, By=v,z" ' +w, +zif n,=2 (in view of L, and (2.1}). Generally
the functions 4, and B, are of the form
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Ap(z) = Z a2m,izi’

i=—(m~—1)

Bk(z) = z b?_m,izia

i= —m

b?_mJn = 1’ me, —m=Uam> Whel'l Ry = 2’”;

m
Ai(z)= z Qg 1i2

1= —m

M1

Bk(Z): Z b2m+l,izis

i=—(m+ 1)

b2m+1, ——(m+l): L b2m+l,m=D2m+1’ When nk=2m + 1

We note that we may write A,(z)=1I1,, _,(z)/z"" ", By(z)=1II,,(z)/z"
when n,=2m, Alz)=H,,(2)/z", B,z)=1II,,,,(z)/z""" when n, =
2m+ 1. Here I, is a polynomial of degree at most equal to r.

A Laurent fraction is called contractive when the following extra
conditions are satisfied:

Co. 0, 1, 1<0 when » is singular,

Ci. Gom Vs Vam_1>0 when (2m,2m—1,2m—2)e T,
Cy. G U3 <0 when (2m,2m—1,2m~3)eT,
Ci. ¢, <0 when (2m,2m—2,2m—4)eT,
Cs. Gop 03 <0 when (2m,2m—2,2m—3)eT,
Cs. Qo1 Vomyt Uam>0 when (2m+1,2m,2m~—1)eT,
Cs. Gomit Voms1<0 when (2m+1,2m,2m—2)eT,
Ci qope 1 <0 when (2m+1,2m—1,2m—-3)eT,
Cs. Gomyt Vami1 <0 when (2m+1,2m—1,2m—2)eT.

There is a one-to-one correspondence between non-singular Laurent
fractions and equivalent general T-fractions, given by the formulas

FZm:qu_—a F2m+1:q2m+15
(2.3)

Gan: s G2m+1=U2m'UZm+19
Vam Uz — 1

or inversely
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F,

. 2m
Gom _&—G’ Gom + 1 :F2n1+l"
2m—1~2m R
(2.4}
1
Vo == Vom0 =G Oy
Gl o 'GZH

The contractive non-singular Laurent fractions correspond exactly to the
APT-fractions.
For more details on Laurent fractions, see [9].

3. THEOREM OF CONTRACTION

Let K7, 2:(z)/Bi(z) be a Laurent fraction, with sequence {n,: k=
1,2,3,..} of non-singular indices. We shall use the following standard
notation for the fractional linear transformations connected with the
continued fraction (see, e.g., [5]):

a(z) S (w)= Az )"’“’Ak—l('}

sk('w):ﬁk(z)+n" B (z)+wB, {2}

Here z is a fixed complex number, and we shall in the following assume
Im z > 0. We shall write « = arg. z.

When n,=2m, n, ,=2m—1, we let I',=1I,{z) denote the circle
described by S,(w) when w varies through the straight line arg w =a. When
m,=2m+1, n,_,=2m we let I',=1,(z) denote the circle described by
S.(w) when w varies through the straight line arg w = —a. When n, = 2m,
n,_,=2m—2 and when n,=2m+1, n,_,=2m—1 we let I',=1{z)
denote the circle described by S.(w) when w varies through the real axis.
We denote by 4, =4,(z) the closed disc bounded by I',. Furthermore
we denote by Q,=Q,(z) the plane set S '(4Y). (40 denotes the open
disc bounded by [I..) Finally we denote by A(p. 6) the sector
iwig<argw<8}, for ¢ <8.

TueoreM 1. Let K7, o(z)/B(z) be a Laurent fraction. The
corresponding sets Q,(z) =S (4Y%) are the following half planes:

(312} Q. ()=Ala—m, o) when n,=2m, n,_,=2m—1, v,,,>0,
(3.1b) Q2,(z)= A(o, x + ) when n,=2m, n,_.=2m—1, v,, <0,
(3.2} Q,(z)=A4(0, n) when n,=2m, n, | =2m—2,

(3.3a) Q. (2V=A4(—oa, —a+=nr) when n,=2m+ 1, n,_,=2m, vy, ,,>0,
(3.3b) QUz)=A(—a—n, —a) when n,=2m+1, n,_,=2m, v, <0,
34y QUz)=A4(—m,0) when n,=2m+ 1. n,_,=2m—1
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Proof. The following facts follow immediately from the definitions: Q,
is one of the half planes A(a—m, a), A(o, a+7) when n,=2m, n, ,=
2m —1; Q, is one of the haif planes A(—a~n, —a), A(—a, —a+ =) when
n,=2m+1, n,_,=2m; 2, is one of the half planes 4(—m=,0), A(0, )
when n,=2m, n,_=2m-—2 and when n,=2m+1, n,_,=2m— 1.

We observe that S, maps the point wy,=wy(z) = — B,(z)/B,_(z) to the
point oo, which does not belong to 4,(z). Hence Q,(z) is that of the half
planes A(a— 7, a), A(a, &+ n) (resp. A(—a—n, —a), A(—0o, —ax+ 7), resp.
A(—m,0), A(0, m)) which does not contain w,. For a given «, all z with
argz=o give rise to the same straight lines argw=o, argw= —a.
Therefore Q,(z) has the same boundary for all these z. By continuity it
follows that all z with arg z=o determine the same half planes Q,(z).

We now determine precisely these half planes.

Let the pairs (2m, 2m — 1) etc. denote (n,, n,_ ). We find in the various
cases:

(1) (Zm,2m—1). Here

_ B)u(2) _ 2 [V + -+ +27] _
Bzm71(2) Z*m[l_i_ +02n17122m_1]

— o[ 1 +0(2)].

It fOHOWS that — U ¢ Qk' HCHCC Qk = A((X — 7, a) When Uy > Oa
Q,=A(x, a+ ) when v,,, <O0.

(2) (2m,2m—2). Here

BZm(Z) _ Zm[l + .. +02m272m]

T =—z[1+0(z"1)]
B, o(z) 2" [l - 40y, .z O] [ (z7H]

”’YO = —

It follows that —z ¢ Q,. Hence Q, = A(0, n).
(3) (2m+1,2m). Here
By 1(2) Z"[Vaep1 + ...+Zf(2m+l)]—

- N 2 =—v m 1+0 271 .
Wo BZm(Z) Zm[1+ +Uzmz—-m] 2 +1[ ( )]

It follows that —v,,, , , ¢ Q.. Hence Q, = A(—«, —a+ ) when v,,,, >0,
Q,=A(—a—mn, —a) when v,,,,, <0.
(4) (2m+1,2m—1). Here

_BZm+1(Z)_ Z_(m+1)[1+"'+Uzm+122m+l]_

B?_m—l(z) Z_m[1+ +L’zm_122m71]

—z '[1+0(2)].

It follows that —z~'¢ 2,. Hence 2, = A(—=,0). |
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THeEOREM 2 (Theorem of Contraction). Ler K, . (z)/B:(z) be «
contractive Laurent fraction. Then A (z)<= 4, _ (2), for k=123, ...

Proof. We want to establish the inclusion s,{2,) = £, _,. From this the
inclusion 4,(z) = 4, _;(z) immediately follows, since S {u)=38,_ (s (=}
Let the triples (2m, 2m — 1, 2m — 2) etc. denote {ny, 1y _ ¢, f1p_ o)

(1) (2m, Zm—1,2m—2). Direct verification, where condition C,
is used, shows that ¢,,,/(va,+ (am_1) 'Z+w)e A(—a, —o+7) when
wedlo—m, ), vy, >0, 15,>0, and when we A(y, x + 1), va,_ >0,
Do <o Similarly go,./(Vam + (U3, 1) ' z4+w)e A{—2—n, —a) when we

Ay —m, ), U3y <0, 0,5, >0, and when we A{a, x +n}, vy, _; <0, 05, <C.

P

This together with (3.1) and (3.3) gives the desired inclusion.

2y (2m,2m—1,2m—3). By using condition C, we find that
G Z (Lo + (V2 ) 24+ w)e A(—m, 0) when we A{o— 7, &), t,, >0, and
when we A{«, 2+ 1), vy, <0. This together with (3.1} and (3.4) gives the
desired inclusion.

(3) (2m, 2m—2, 2m —4). By using conditions C, and C, we find tha:
Gord Panel Vo 2) 27w, +z+w)e A0, 1) when we 4(0, n). This
together with (3.2) gives the desired inclusion.

(4} (2m,2m—2,2m—3). Let we 4(0, n). By using conditions C, and
C, we find that ¢,,2/(tou(tsm_2) ' 27 + Wy, +2z+w) belongs to
A{a—mn,2) when v,, ,>0 and to 4(x,a+7n) when u,, -><0 This
together with (3.1) and (3.2) gives the desired inclusion.

(5) (2m+1,2m,2m—1). By using condition C; we find that
Gom s 1/ ((Eom) "2+ 0g, tW)ed(d—m, o) when weAd(—x —a+7),
>0, vy >0, and when weA(—a—n, —a), v5,>90, 05, <b
Similarly Gom s /((Vam) "' 2 '+ Vg1 +WIEA(a, o +7) when we A{—a,
—a+n), 03,<0, v3,,,>0, and when wed(—x—mn —a), v,,<0,
Vs 4+ < 0. This together with (3.1) and (3.3) gives the desired inclusion,

(6) (2m+1, 2m, 2m — 2). By using condition C, we find that ¢, =/
((020) "2 "+ 0y 1 +W)EAO, T) When we A{—a, —a+7), Uy, >0
and when we A(—a —m, —a), v4,,, ( <O. This together with {3.2) and (3.3}
gives the desired inclusion.

(7Y (2m+1,2m—1,2m—3). By using conditions C; and C, we
find that gam /(2 + W+ Vo s 1(Pam 1) Fz+w)e A(—m, 0) when we
A{—m, 0). This together with (3.4) gives the desired inclusion.

(8) (2m+1,2m—1,2m—2). Let we A(—mn.0). By using conditions
C, and C; we find that gy, 27" /(z '+ wa+ Voo (U 1) " 24+ W)
belongs to A(—a, —a+ =) when v,,, >0, and to A(—x—m, —2) when
9,1 < 0. This together with (3.3) and (3.4) gives the desired inclusion. &
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We shall write A_(z) for the intersection (., 4,(z). It follows from
Theorem 1 that 4 _(z) is either a single point or a closed disc.

4. THEOREM OF INVARIABILITY

As before let K, o.(z)/B:(z) be a contractive Laurent fraction, with
approximants f,{z)= A,(z)/B.(z). We shall always assume that Imz>0
(and Im (>0 when { occurs). It will be convenient partly to replace the
functions A,(z), B,(z) by normalized functions M, (z), N,(z) in the
arguments that follow.

We introduce constants @, as follows:

Q,= IT{(—q,): i<n, i non-singular}.
For every k we define M,, N,, and also M, ,,, N, ., when
ny 1 —n,=2, as follows:

Forn,,=2m+1, n,=2m:

MZm(Z) = (— UZm+ 1° Q2—n11+1)1/2 Ak(z), NZm(Z) = ( '_UZm+l ) Q?__ml-q— 1)1/'2 Bk(z)'

(4.1)
For ny . =2m+1, n,=2m—1:
AIZm — l(z) = (an}+ 1)1/’2 Ak(z)’
Nop_ilz)=( 277114—1)1/2 B,(z).
’ U ¥l 1/2 .
Mzm(z):(ail‘) EMy_(2), 42)
l‘2m~l

p 12
U21+1 -
Nante) = ( 22 ) Ny 1(2).

Uom—1
For ny, =2m, n,=2m—1:
M, (z)= (03, - 035 Ax(
For n,, ,=2m, n,=2m—2:
M, 3(2) = (=03, )" Ai(2),
Ny o(2) = (= 03.)"7 Bilz),

'y

b Nowoi(2)= (02, 03,1)'7 Bi(2). (4.3)

(4.4)

U2m 2
A{?.m»fl(z)z(_ ) z 1M2m—2(£)’

Uom -2

Uy 1/2
sz_l(z>=(— : ) 2 N _fz).

Voam 2
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It can be verified by induction, using conditions CO0-C8, that ail the
expressions under the square root sign are positive.

We shall need some formulas analogous to the classical Christoffel-
Darboux formula and related formulas.

We shall set y,=1 when n,=2m, #n,_ ,=2m—1; y,=—1 when
ny=2m+1, n._,=2m; y,=0 when n,=2m, n,_,=2m—2 and when
n,=2m+1,n,_,=2m-—1.

By multiplying the second of the recurrence relations {2.1) by ("B, _ {1
and subtracting the same expression with = and { interchanged we get

{UB(2) By () — 2B ({) B ((z)
=[Bulz) * = B({)z*] By _1(z) B _1is)
+ 2 (2) E*By _ (§) By 5(2) — o (O)2™ By (2} B ().

In the eight cases corresponding to L1-L8 we then get (choosing
appropriate values of y,):

<Bi(z) By (5) — 2B ({) B 4(2)

=03, ({ —2) B, 1(2) B, _({)

~@om=C [ B ((2) B o) =2 B (D) Bi o)) (45)
¢Bi(2) By ((Q)—zBil{) By 1(2)

=Uals —2) Bi_1(2) B 1(0)

~GomzS [ B 1(2) By (O)— By (&) B, _»{2)]. {4.6}
ilz) B _1($) — Bi(<) B _4(2)
’ L’Zm 1 ) - “
= (1) =) B () B )
Vo2 Z¢
~Goml B 1(2) By _»({)— B, _1{{) By _,(2)]. (4.7}

Biz) B, ({)—BU{)B, \(z)

Pam 1 l v v
=( '?—1)(9_2)Bk—1(2)3k—1($)

~@om (27 B 1(2) Bi_o({) = ST B () Bi_2(2)] (48)
2B (z) By _1{8) = {BWl{) Bi_((2)
= — Vg 4 1({—2) B 1(2) B, _1({)
~@oms | [EBy_1(2) B _5($)— 2B 1($) By 5(2)]. (49)
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zBi(z) B () — (Bi({) By (2)

—Vam+ 1({—2) B () B _4({)

—2m+ 10 Bk 1(2) By _5({) = B, 1({) Bi_»(2)]- (4.10)
Bi(2) By 1(0) — B({) B 1(2)

=(ZC)1< ol C+1>( —z) B _1(z) B, _1({)

Uom—1
_q2m+1[Bk71(z)Bk-Z(C)_kal(C)Bk—z(z)]' (4.11)
B (z) By _ () — Bi({) By 1(2)

() (—MJr 1) ((=2) By 1(2) Bu_,(0)

Vo —1

~Gom+1L{™ Bk 1(2) B _({)— lBk—l(‘:)Bk~2(Z)]- (4.12)

Iteration of the above equalities and use of (4.1)-(4.4) gives:
For ny=2m, n, _,=2m—1:

2m—1
{Bi(z) B (({) = 2Bi({) Bi_1(2) =({ = 2) Qo 2, NAz) NAO). (4.13)
i=0
For n,=2m, n,_,=2m—2:
2m— |
B(z) B, 1({)— Bi(0) Bi_1(2)=({—2) Qo 3, Niz) N{L). (4.14)
i=0

For n,=2m+1, n,_,=2m:

zBi(2) By - (0) = {Bl{) By _1(2) =({—2) Qam 41 Zm N(z) N(D).  (4.15)

For ny=2m+1, np_,=2m— 1:
2m

Bi(z) By (({)=Bul0) B () =({~2) Qamy1 2 Ni2) NAO).  (4.16)

i=0

By using an analogous procedure to both of the formulas (2.1) we obtain
{4y _1(0) Bilz) — 274 (2) B ()
= [Bi(z) {* = Bi(0) 2% ] By _1(z) A)_1(£)
= otx(2) T Ay ((§) Bre_5(2) — 0 ({) 27 By _ (2} Ag ().
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Again by iteration and use of (4.1)-(4.4) we get the following formulas:
Forn,=2m, n,_,=2m—1

ZB({) Ay 1(2)—{Ak(z) By ()
2m— 1

=((~2)Qam- Y. M) N+ Qs (@17)

i=1

Forn.=2m, n,_,=2m-2:

Bi(C) Ay 1(z) — A(z) By _ ()
2m —1

Z(C—‘Z)'QZm' z ‘Mi(z)ivi(g]’—i—QZmZ' {418E

i=1

For ny=2m+1, n,_,=2m:

Az) B (O = CBil(§) Ag -1 (2)

2m

=({~2)Qumi1- 2 MA) N+ Qa2 (4.19)
i=1

Forn,=2m+1, n,_,=2m—1:

$ZB () A ((2)—CzA,(2) B 1(C)

=({=2) Qomer- 2 M) N(D + Qa2 {4.20)

i=1

In particular we have, when we set D {z}=B8.(z)4,_,{z)—
Alz) By _(2) (cf. [9, Lemma 1]):

D (z)=05. when n,=2m, n,_,=2m—1, (4.21;
Dz)=0pn 2 when »n,=2m,n,_,=2m—2, (4.22}
DUz)=0omyi1 when n,=2m+ 1, n,_,=2m, (4.23}
D(z)=Quppyr- 27" when n,=2m+1,n,_,=2m—1. {424}

By multiplying (4.17)-(4.20) by B,(z) and subtracting (4.13)-(4.16}
multiplied by 4,(z), and using the definitions of M,. N, and (4.21)}-{4.24)
we obtain

Noplz) = Nopl$)

={"({~z) _Z (N5 (8) ML) — M5, (0) NACYH] - Ni(z), (4.25}
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N2m+1(z)_N7m+l(C)

i
N

Z (N2 1(8) MAC) = Moy (O N(D)]-Ni(z).  (4.26)

Now consider the transformation

A4(2)+ 274, _,(2)
Bz} +z"*B, _(z )

T Flt,z)=

It follows from Theorem 1 that this transformation maps the real axis onto
I'\(z) (recall that y,=1 when n,=2m, n,_,=2m—1; y,=—1 when
n,=2m+1, n,_,=2m; y,=0 when n,=2m, n,_,=2m—2 and when
n,=2m+1, n,_,=2m—1). Hence it can be seen, using general properties
of linear fractional transformations, that the radius S,(z) of the disc 4,(z)
is given by

z"%A(2) B, (z)—z"A, _((z) Bi(2)
z¥)% Bi(z) By 1(2%) — 2By _(2) Bi(z*)|

(Here z* denotes the complex conjugate of z.) See, e.g., [1]; cf also the
argument of [2] which utilizes an idea in [14]).

pilz) = (4.27)

THEOREM 3. The radius p,(z) of 4,(z) can be expressed as
ne— 1 1
pte)={lz==1 'L e}

Proof. The result follows by substitution from the formulas
(4.21)-(4.24) in the numerator and from the formulas (4.13)-(4.16) in the
denominator of (4.27). |

The radius p(z) of 4 ,(z) is obviously given by p(z) =1lim, _, _ p«(z). So it
follows from Theorem 3 that A4 _(z) reduces to a single point if and only if
22 IN(2)]? = 0.

Now consider the transformation

1 B(z)+1z"Bi_(2)

F(t,z) Ap(z)+12"4, (z)

T

This transformation gives rise to a nested sequence {4;(z)} of discs with
intersection 4, (z) which is a single point when 4 __(z) is a single point and
a disc when 4 (z) is a disc. The transition from 4,(z) to 4;(z) is made by
replacing A,(z) by B,(z) and B,(z) by A,(z). Thus the radius p;(z) of 4;(z)
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is given by pi(z) = {|z —z*| - T3  IM(2)]*} % 1t follows that 4’ (z), and
hence A _.(z), ruduces to a single point if and only if X, |M,(z)|*= 0.

THeOREM 4 (Theorem of Invariability). If A4 () is a disc for some {,
then A .{z) is a disc for every z

Proof. We sketch an argument which is practically identical with that
given in [27] for APT-fractions. An alternative proof can be obtained by
slightly modifying the proof of Theorem 3.5 in [13], which builds on [1].

Assume that 4 () is a disc. Then

Y IMOF<®, Y INOP<®.

=1 i=1

By elementary inequalities we get

n—1i-1
Y Y AN ML) — MA) NP

=1 =1

(IZ N )(nzlwug ) (4.28)

1=1 =1

It follows from a Lemma of Perron [14, p. 71] that when z, is given
recursively by z,=>""!a,,z;+c,, then

n a i—1 n
1n<1+ S |z ) S Y a7+ el (4.29)
i=1

i=1;5=1 =1

Formulas (4.25), (4.26) show that if znz N,,(z}, c, =N, a; ;=
{THE =N MUE) — NJL) MA)], resp. a; ;= 27"z — INALD) MAD) —
NAO M ()], then the recursion relation above is satlsﬁed By using (4.28}

and (4. 29) we find that

(1+Z|N< ) 3 IVOI+ 2 =2 max( 1)

("‘Zl IND?)- (, M),

i=1 i

From this we conclude that the series > , |N{z)|” converges to a finite
value, and so 4 (z) is a disc. i



150 OLAV NJASTAD
5. THEOREM OF PARTIAL FRACTION DECOMPOSITION

We shall write A4,(z,t) for the expression A4,(z)+1z%*4, (z) and
B,(z, 1) for the expression B,(z)+ tz"*B,_,(z), Te R. We shall call the
function z — Fi(z, 1) = A(z, 1)/B,(z, 1) a generalized approximant for the
continued fraction K, a.(z)/B.(z), when zeR. It follows from Section 2
that for all values of t except one we may write B,(z, 1) = Il,,,, ,(z, t)/z"*"
when n,=2m+ 1, B.(z, 1)=I1,,(z, t)/z™ when n,=2m. Here I1.(z, 1) is a
polynomial in z of degree r. Consequently (except for one value of 1)
B.(z, 1) (as a function of z) has exactly n, zeros, counted with multiplicity.
Furthermore z=0 is not a zero of B.(z, ). For z#0 the transformations
w—s,(z, w) and therefore the transformations w — Si(z, w) are non-
singular. Hence there can be no w such that A.(z)+wA,_,(z)=0 and
Bi(z) +wB,_,(z)=0. Consequently A.(z)+12*4,_,(z) and B.(z)+
1z"*B, _,(z) are not both zero for the same value of z.

By utilizing the results of Section 3 we shall prove that B(z, ) has n,
simple real zeros and that z 'F,(z, t) has partial fraction decomposition
with only positive coefficients.

THEOREM 5 (Theorem of Partial Fraction Decomposition). The
denominator B,(z, 1) has n, simple zeros t{(z), ..., t{)(t) on the real axis.

The generalized approximant F,(z, t) has partial fraction decomposition of
the form

(5.1)

where 4, (t)>0 for v=1, .., n,.

Proof. We note that if z is a zero of B,(z, t) then also z* is a zero of
B,(z, t). So if not all the zeros are real there exist zeros in the upper half
plane. It follows from the construction of the discs 4,(z) (for Im z > 0) that
Sz, 1z7%)e 4,(2). Also oo ¢ d,(z) for k=1,2,... Thus B,(z,7)#0 for
Im z >0, and consequently all zeros of B,(z, ) are real. We write these
zeros (each counted once) as ¢, ..., Z,.

Since z 'F(z,t) can be written as a rational function where the
denominator is a polynomial of degree n, while the numerator is a
polynomial of degree at most n,— 1 (see Section 2) and where numerator
and denominator have no common zeros, we may write

. cv cv'n
Zile(Z,T)= Z ( L + ... +__‘_"_>,

(z+1) (z+1,)™

v=1

where m, + --- +m,=n,.
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For points near ¢,, the dominating term in this sum is ¢, /{z+ )™

From the mapping properties of the transformations w — 5,(z, w) we know
that Im zF,(z, 1) >0 when Im z>0. Consequently m, cannot be greater
than 1 and ¢, ; must be positive. (For details, cf. the argument concerning
APT-fractions in [2].)

10.

It

From this the desired result follows. |
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