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In [9] a class of continued fractions called Laurent fractions wcrc introduced,
and it was shown that there is a one-to-one mapping between all Laurent fractions
and all double sequences of real numbers {c n : n = 0, ± 1, ± 2, ... } satisfying
H~;;,2m) ,",0, Hi;;, ,:,,) '"' 0, 111 = 0, 1, 2, .... (H~pJ are the Hankel determinants associated
with the double sequence.) The mapping is defined through the concept of
correspondence between the continued fraction and the series Lk~ 1 -c _kZk at
Z =0, and the series Lk~O CkZ -k at z = 00. The subclass of contractive Laurent frac
tions is mapped onto those double sequences which satisfy Hk 2ml > 0, Hi;;,:m/ > 0,
111 = 0, 1,2, .... The main results of this paper are the following: (i) A sequence
{Llk(z)} of discs connected with a contractive Laurent fraction is nested (for each Z
where 1m Z '"' 0). (ii) The intersection nk~ 1 Llk(z) is either a single point for every z
or a closed disc for every z. (iii) General approximants Fk(z, ,) associated with a
contractive Laurent fraction have partial fraction decompositions of the form
Fk(z, ,) = L~~ 1 Aj(Z + t ,), where t, E R, A, > O. It: 1989 Academic Press. Inc.

1. INTRODUCTION

Let {Cn : n = 0, 1,2, ... } be a sequence of real numbers. The Hankel deter
minants Hlcnl are defined for n = 0, 1,2, ... as follows:

Cn+k-l

H (n)
k -

Cn+k-l Cn +2k-2

, k = 1,2,3, ....

When {c n : 0, ± 1, ± 2, ... } is a double sequence, the Hankel determinants
are defined as above for n = 0, ± 1, ± 2, ....

With a given (simple) sequence {cn } we associate a formal power series
Lk~O Ck Z -

k
, and with a given double sequence {cn} we associate two

formal power series L:~o CkZ-k and Lk"~ 1 -C _k Zk
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A continued fraction

K
XJ IXk(Z) _ IXI(Z) o:Z(Z) iX 3(Z)
----- -- --

k~ I/h(z) /31(Z)+ /32(Z) + /33(Z) + ..

135

is said to correspond to the series L.f~OCkZ-k at z=x, if formal power
series expansions of the following form are valid for every k (we write fk{ z)
for the kth approximant of the continued fraction),

,."

fk(z)- L cpZ-P=CZ-II<k+l)+

p~O

where ilk ---> ,x) when k ---> 00.

The continued fraction is said to correspond to the series I:.f= 0 Ck Z - k

at Z = 00 and to the series Lt~ 1 - c _kZk at z = 0 if formal power senes
expansions of the following form are valid for every k,

Ilk

fk(z)- I cpz-P=CZ-lllHI)+ "',

p=o

"h

fdz) + L c _pZP = dzl\'H 1) +
p=l

where 11k ---> 'x), V k ---> 00 when k ---> w.
A i-Faction is a continued fraction of the form

glZ gz g3

z+h l -z+hz -z+h3 - ... '
gkofO for k= 1, 2, ....

It is called a real i-ji'action if gk > °for all k. The concept of correspon
dence induces a one-to-one mapping between all i-fractions and aU
(simple) definite real sequence {cn}' i.e., real sequences satisfying the
condition

k=O, 1,2, ....

The real i-fractions are mapped onto the positive definite sequences. l.e.,
the sequences where

k = 0,1,2, ....

For more details on these correspondence results, see, e.g., [1, 5, 16].
For every complex number z outside the real axis we set sd H") =

IX k(Z)/(/3dz)+w), Sk(W)=SIOSZJ·" oSk(W), Then the transformation
w ---> Sk(l1') maps the real axis onto a circle lk(Z) bounding a disc Llk(z). If

640.56·2-~
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the continued fraction K:~, IY.k(Z)/f3k(Z) is a real i-fraction, then the
sequence {Llk(z)} of discs is nested, i.e., Llk+,(z)cLlk(z) for all k. The
intersection LI ex; (z) = nk~' LI k(Z) is a disc or a single point, and it can be
shown that either Lloo(z) is a disc for all z (the limit circle case) or a point
for all z (the limit point case). General approximants Fdz, r) = Sk(Z, r),
r E R, have partial fraction decompositions of the form Fk(z, r) =
z L~=, ..tj(z + tJ, where t" E R, ..tv> O.

The Hamburger moment problem (HMP) can be formulated as follows:
Given a sequence {c fl : n = 0, 1,2, ... ) of real numbers, find conditions for
the existence of a distribution function l/J on the real line (i.e., a bounded,
non-decreasing function with infinitely many points of increase) such that
Jexo 00 ( - t)" dl/J(t) = Cfl' n = 0, 1,2, .... A necessary and sufficient condition
for the problem to have a solution is that the sequence {cll } is positive
definite. The series Lk~O CkZ-

k then has a corresponding i-fraction, and
this is real, so that the sequence {LI k(Z)} is nested and the limit circle case
or the limit point case occurs. The HMP has a unique solution if and only
if the limit point case obtains for the sequence.

For more information on these results, see, e.g., [1, 5, 16].
The denominators of the approximants of the real i-fraction form a

system of polynomials which is orthogonal with respect to the
corresponding sequence {cll }. The nestedness of the sequence {Llk(z)} and
the characterization of unique solvability of the HMP in terms of the limit
circle-limit point situation can also be obtained by using properties of
orthogonal systems of polynomials; see, e.g., [1].

In [9] we introduced the concept of a Laurent fraction (for definition see
Section 2). We showed that the concept of correspondence at z = 00 and at
z = 0 induces a one-to-one mapping between all Laurent fractions and all
definite real double sequences {c n : n = 0, ±1, ±2, ",}, i.e., all real double
sequences satisfying the condition

m=O, 1,2, ....

A subclass of the Laurent fractions consisting of the contractive Laurent
fractions (for definition see Section 2) is mapped onto the class of positive
definite double sequences, i.e., the sequences where

m=O, 1,2, ....

By a general T-fraction we mean a continued fraction of the form

F,z Fzz F 3 z

1+G,z+1+Gzz+1+G 3 z+ ... '
for k = 1, 2, ....
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It is called an APT-fraction if F2m _ 1 F2m > 0, F2m _ 1 G2m _ I > 0 for all m (d.
[4]). Every general T-fraction is equivalent to a non-singular Laurent frac
tion (for definition of non-singularity see Section 2) and vice versa. Every
APT-fraction is equivalent to a contractive non-singular Laurent fraction
and vice versa. (For the concept of equivalence of continued fractions. see,
e.g., [5].)

It has been known the last few years that the concept of correspondence
at z =:x and at z = °induces a one-to-one mapping between all general
T-fractions and all definite double sequences {en} which also satisfy the
condition

H~,~ (2m - 11) =f.: 0, for m = L 2, ....

The APT-fractions are mapped onto the positive definite sequences which
also satisfy the same condition

H~/-;, \~m - I)) i= 0, H~~ 1!7' - III i=° for In = 1, 2, ....

Correspondence results for general T-fractions can also be formulated in
terms of the closely related M-fractions

F 1 F2 z F 3 z

I+G l z+l+G 2 z+I+G j z+ ...

introduced in [7,8]. For more information on general T-fractions (or
Af-fractions), in particular APT-fractions, and correspondence results 2.t

Z= OCt and at z=O, see, e.g., [2,4-8,15].
It has also recently been shown that when the continued fractioL

Kr~ I O'.k(Z)/f3k(Z) is an APT-fraction, then a corresponding sequence
{LJ ,,( z)} of discs is nested, and either the limit point case or the limit circle
case obtains (i.e., the intersection LJ"Jz) is either a point for all z or a disc
for all z); see [2]. General approximants Fk(z, r), T E R, associated with the
APT-fraction have partial fraction decomposition of the form Fk(z. r) =
zL':~IJj(z+t,), where t,.ER, ,1,,>0; see [2].

The strong Hamburger moment problem (SHMP) may be formulated as
follows: Given a double sequence {c,,: n = 0, ± 1, ± 2, ... } of real numbers,
find conditions for the existence of a distribution function lj; on the real line
such that S:::oc (- tr dl/!{t) = e,l' n = 0, ± 1, ±2, .... In the non-singular
case, i.e., in the case when the series Lk'~ 0 CkZ -k and LA"~ 1 - C_kZk corres
pond to an APT-fraction. it was proved by continued fraction methods in
[2] that a necessary and sufficient condition for the SHMP to have a
solution is that the sequence {c,,} is positive definite. Furthermore it was
shown that the problem has a unique solution if and only if the limit point
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case obtains. Both the limit point case and the limit circle case do actually
occur; see [12, 13].

The contractive Laurent fractions are connected with orthogonal
Laurent polynomials in the same way as real I-fractions are connected with
orthogonal polynomials. Orthogonal Laurent polynomials can be used
directly to obtain existence and uniqueness results for the SHMP in the
general case; see [3, 11, 13].

In a forthcoming paper [10] we show that such existence and uni
queness results for the SHMP in the general case also can be obtained by
continued fraction methods alone. Properties of contractive Laurent frac
tions discussed in this paper are needed for such a continued fractions
treatment of the problem. However, the results of this paper may be of
some interest in themselves, and in the arguments we have no recourse to
the fact that contractive Laurent fractions correspond to series determined
by (positive definite) double sequences. Thus there are no further references
to the double sequences {ell} or the series 'Lr=OCkZ-k and 'Lf=l -e_kzk
in this paper.

The main results we are going to prove are:

(1) A sequence {Adz)} of discs connected with a contractive
Laurent fraction is nested.

(2) Either the limit point case or the limit circle case occurs
(independently of z).

(3) General approximants Fk(z, r) associated with a contractive
Laurent fraction have partial fraction decompositions of the form
Fk(z, r) = z 'L~k~ I A)(Z + tvl, where tv E R, A,. > 0.

For definitions and basic properties concerning continued fractions we
refer the reader to [5].

2. PRELIMINARIES

Let S be a subsequence of the sequence N= {a, 1,2,3, ... } of non
negative integers, with the property that no two consecutive elements of N
belong to S. We call the elements of S singular indices, and the elements of
N-S non-singular indices. We denote by T the set of all triples of
consecutive non-singular indices (i.e., triples of non-singular indices where
there are no non-singular indices in between).

For every non-singular index n an ordered pair (a,,,b,,) = (a,,(z), b,,(z»
(where z is an arbitrary complex number different from zero) is defined in
the following way:
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L[. For every non-singular index n there is given a real number
v"i=O and Vo= l.

L H . For every non-singular index 11 there is given a real number q".
where qo = 0, qn i= °for n i= O.

Lm . For every singular index n there is given a real number li'n"

The complex numbers an, bn are given as follows:

L 1· a2m = q2m' b 2m = ['2m+ (l/v 2m - 1).:-, when (2m, 2m-I, 2m-2) E T.

L2 . U2m=Q2m':-' b2m=V2m+(I/V2m-l)':-, when {2m,2m-l,2m-3)E T.

L 3 · G2m = Q2m' b 2m = (V2m/V2m_2)Z-1 + \\'2m .. 1+ z, when (2m, 2m - 2,
2m - 4) E T.

L 4 · G2m=q2mz, b 2m = (V2m/V2m_2)Z-I+1l'2m_l +z, when (2m,2m-2,
2m - 3) E T.

Ls · G2m+1=q2m+1' b2m+l=(1/V2m)z-1+V2m+l' when (2m+1.2m.

2m -1) E T.

L 6 . G2m+;=Q2m+lZ-1, b2m+l=(I/V2m)z-1+V2m+l' when (2m+1.

2m, 2m - 2) E T.

L 7 · G2m+1 = Q2m+l> b 2m + 1 = Z-l + 1l'2m + (V2m+u'V2m_l)Z, when
(2m + 1, 2m - 1, 2m - 3) E T.

Lg . G2m+1=Q2m+1z-l, b2m+1=Z-1+lI'2m+(V2m+dv2m_I)':-' when
(2m + 1, 2m - 1, 2m - 2) E T.

(We consider 11 = -1 as a non-singular index in these formulas.)
Let {11k: k = 0, 1, 2, ... } = N - S be the sequence of non-singular indices.

We write ct k = iXk(Z) = a"k(z), Pk = Pk(Z) = bn,(z) for k = 1, 2,3, .... We note
that r:J. k i= 0 for every k. Therefore {(r:J. b Pd: k = 1, 2, ... } is the sequence of
elements of a continued fraction K:~ 1 (r:J.k(z)/lh(z)). A continued fraction
obtained in this way we call a Laurent fraction. We call a Laurent fraction
non-singular if all indices are non-singular.

Let Ak(z) and Bdz) denote the numerator and denominator of the kth
approximant fk(z) of this continued fraction. Then Ak(z) and Bk(z) satisfy
the following recursion formulas:

Ak(z) = Pk A k-1(Z) + r:J. kA k_2(Z)

Bdz) = f3kBk-1(Z) +r:J.kBk_2(Z)

for k = I, 2, ..., A -I = 1, A o = 0,
(2.1l

for k= 1, 2, ... , B_ 1 =0, Bo= 1.

We note that Al = Q1, B 1 = Z-l + VI if n 1 = 1 (in view of Ls and (2.1), while
Al = Q2Z, B 1 = V2Z-1 + IV 1 + z if n 1 = 2 (in view of L4 and (2.1 n. Generally
the functions A k and B k are of the form
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m

L
i~ -(m-I)

a2m,i Zi,
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m

Bk(z) = L b2m,i/'
i= -In

b 2m,m = 1, b2m, -m = v2m , when nk = 2m;

m

Ak(z) = L a2m + LiZ
i
,

i= -nl

(2.2)

m

L
;~ -(m~ I)

b 2m + I,-(m+ 1\ = 1, b 2m + I,m = v 2m + I' when n k = 2m + 1.

We note that we may write Ak(z) = II2m _I(Z)/zm-l, Bk(z) = II2m(z)/zm

when nk = 2m, A k (z)=II2m(z)/z"', B k (z)=II2m +l(z)/zm+l when nk=

2m + 1. Here IIr is a polynomial of degree at most equal to r.
A Laurent fraction is called contractive when the following extra

conditions are satisfied:

Co· Vn - I 'Vn+1 <0 when n is singular,

C I . q2m' V2m ' V2m - 1 > 0 when (2m, 2m -1, 2m - 2) E T,

C 2 • Q2m' V2m < 0 when (2m, 2m - 1, 2m - 3) E T,

C 3 , Q2m<0 when (2m, 2m - 2, 2m - 4) E T,

C 4 , Q2m'v 2m <0 when (2m, 2m - 2, 2m - 3) E T,

C s· Q2rn + I . V2m + I . V2m > 0 when (2m+ 1, 2m, 2m-1)E T,

C 6 , Q2m+I,v 2rn + 1<0 when (2m + 1, 2m, 2m-2)E T,

C 7 • Q2m+1 <0 when (2m + 1, 2m - 1, 2m - 3) E T,

C 8 . Q2m+I'V2m + 1<0 when (2m + 1, 2m - 1, 2m - 2) E T.

There is a one-to-one correspondence between non-singular Laurent
fractions and equivalent general T-fractions, given by the formulas

or inversely

F
V2m_1

2m==Q2m--'
V2m

G2m=---
V2m' V2m--1

(2.3 )
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q2m=G G'
2m-12m

1
v2m = ,

G1 ···G2m
V 2m + 1 ==G! ···G2m -t-l-

(2.4 )

The contractive non-singular Laurent fractions correspond exactly to the
APT-fractions.

For more details on Laurent fractions, see [9].

3. THEOREM OF CONTRACTION

Let KZ"~lcxk(z)/lh(z) be a Laurent fraction, with sequence {nk:k=
1,1, 3, ... } of non-singular indices. We shall use the following standard
notation for the fractional linear transformations connected with the
continued fraction (see, e.g., [5J):

Here z is a fixed complex number, and we shall in the following assume
1m z> O. We shall write iY. = argo z.

When I1 k =2m, nk_I=2m-l, we let Tk=Tk(z) denote the circle
described by Sk(W) when It' varies through the straight line arg It' = 0:. When
I1 k =2m+l, I1k_I=2m we let Tk=Tdz) denote the circle described by
Ski w) when It' varies through the straight line arg IV = - rJ.. When nk = 2m,
I1 k_ 1 =2m-2 and when nk =2m+l, I1 k _ I=2m-l we let Tk=r,dz)
denote the circle described by Sk( w) when II" varies through the real axis.
We denote by .1 k = .1k(z) the closed disc bounded by T k . Furthermore
we denote by Qk=Qk(Z) the plane set S;I(.12). (LIZ denotes the open
disc bounded by Tko! Finally we denote by A(¢;, 8) the sector
{ w: ¢; < arg l\' < 8}, for ¢J < e.

THEOREM 1. Let K:~ 1 iY.k(z)/Ih(z) be a Laurent fraction. The
corresponding sets Qk(z) = S; I(AZ) are the following half planes:

(3.1a)

(3.1 b)

(3.2)

(3.3a)

(3.3b)

(3.4 )

Q k (.:) = A(o: -n, cd
Qk(z) = A(o:, 0: + n)

Qk(z) = A(O, n)

Q i;\ Z ) = A ( - iY., - ex + n)

QAz)=A(-o:-rr, -ex)

Qk(z)=A(-rr,O)

when nk = 2m, nk _: = 2m - 1, V 2m > 0,

when nk=2m, nk _,=2m-l, i'2m<O,

when nk = 2m, nk_1 = 2m -2,

when nk=2m+l, nk_l=2m, V2m+I>O,

when nk = 2m + 1, nk_1 = 2m, V2m+ 1 <0,

when flk = 2m + 1. fl k _ l = 2m - L
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Proof The following facts follow immediately from the definitions: Q k

is one of the half planes A(IX - n, IX), A(IX, IX + n) when nk = 2m, nk_ 1=
2m -1; Q k is one of the half planes A( -IX - n, -IX), A( -IX, -IX + n) when
nk = 2m + 1, nk- 1= 2m; Qk is one of the half planes A( -n, 0), A(O, n)
when nk = 2m, nk-I =2m-2 and when nk =2m+ 1, nk_ 1=2m-1.

We observe that Sk maps the point 11'0 = wo(z) = - Bk(z)jBk- 1(z) to the
point 00, which does not belong to Ak(z). Hence Qk(z) is that of the half
planes A(IX - n, IX), A(IX, IX + n) (resp. A( -IX - n, -IX), A( -IX, -IX + n), resp.
A( -n, 0), A(O, n)) which does not contain 11'0' For a given IX, all z with
arg z = IX give rise to the same straight lines arg II' = IX, arg H' = - IX.

Therefore Qk(z) has the same boundary for all these z. By continuity it
follows that all z with arg z = IX determine the same half planes Qdz).

We now determine precisely these half planes.
Let the pairs (2m, 2m - 1) etc. denote (nk, nk_ d. We find in the various

cases:

(1) (2m, 2m-I). Here

Bzm(z) z-m[VZm + ... + zZm]
W o= -B ()= - -m[I zm_l]=-vzm[I+O(z)].

Zm-I Z Z +"'+VZm_1z

It follows that -VZm¢=Qk' Hence Qk=A(IX-n,IX) when VZm>O,
Qk = A(IX, IX + n) when VZm < 0.

(2) (2m, 2m - 2). Here

It follows that -z¢=Qk. Hence Qk=A(O, n).

(3) (2m+ 1, 2m). Here

zm[VZm+1 + +z-(Zm+I)]

zm[I + + vzmz- zm ]

It follows that -vZm+I¢=Qk' Hence Qk=A(-IX, -IX+n) when vZm+I>O,
Q k = A( -IX - n, -IX) when V Zm + 1 < 0.

(4) (2m+ 1, 2m-I). Here

B () -cm+I)[I + + ' zm+l]_ Zm+1 Z _ Z ... CZm+1Z _ --1[1+0()]
11'0- - - - -'" z .

BZm_l(z) z-m[I + ... +VZm_IZzm-l]

It follows that - Z-I¢= Qk' Hence Qk = A( - n, 0). I
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THEOREM 2 (Theorem of Contraction). Let Kk~ 1 Olk(Z)/lh(z) be a
contractive Laurent fraction. Then .J k(Z) C.J k- I(z), for k = 2, 3, ....

Proof We want to establish the inclusion Sk(Qk) C Qk-l' From this the
inclusion .J k( z) c LJ k_ 1(z) immediately follows, since S k( It') = Sk_ 1(sd II')).

Let the triples (2m, 2m - 1, 2m - 2) etc. denote (nk' nk -1' nk _ 2)'

(1) (2m, 2m-I, 2m-2). Direct verification, where condition C 1

is used, shows that q2m/(V2m+(V2m_I)-IZ+W)EA(-()(, -rx+n) when
wEA(rx-Jr.,IX), V2m-l>O, V2m>O, and when WEA(et., ()(+Jr.), V2m _ I >O,
t'2m <0' Similarly Q2m!(V 2m + (v 2m _ tl- I Z + w) E A( - IX - Jr., - rx) when WE

A(rx - Jr, (X), V2m _ 1< 0, V2m > 0, and when WE A(IX, IX + Jr.), 1.'2",-1 < 0, t'2m < O.
This together with (3.1) and (3.3) gives the desired inclusion.

(2) (2m, 2m - 1, 2m - 3). By using condition C 2 we find that
Q2mZ/(t'2m + (v 2m _ tl- 1 Z + w) E A( -Jr., 0) when H' E At-:x - Jr., IX), t: 2m > 0, and
when H'EA(ex, x+Jr.), V2m<0. This together with (3.1) and (3.4) gives the
desired inclusion.

(3) (2m, 2m - 2, 2m - 4). By using conditions Co and C 3 we find that
Q2m;'(V 2m (V 2m - 2) -I Z-I + 1l'2m_1 + Z + w) E A(O, Jr.) when \j' E A(O, Jr.). This
together with (3.2) gives the desired inclusion.

(4) (2m, 2m - 2, 2m - 3). Let WE A(0, Jr.). By using conditions Co and
C 4 we find that Q2mZ/(V2m(V2m_2)-I;;-i+W2m_l+Z+W) belongs to
A(rx-Jr.,:x) when V2m - 2>0 and to ,1(a,rx+n) when V2m _ 2<0. This
together with (3.1) and (3.2) gives the desired inclusion.

(5) (2m + 1, 2m, 2m - 1). By using condition C 5 we find that
Q2m+t!((t'2m)-l z -l+ V2m +I+W)EA(IX-n,rx) when It'EA(-:x, -rt+n),
v2m >0, V2m+l>0, and when wEA(-a-n, -:x), V 2m >O, 1'2",+,<0.
Similarly q2m+ 1/((V2m )-1 Z-I + t'2m+ 1 + w) E ,1(IX, tI. + 11:) when WE A( -C>:,

-IX+Jr.), V2m <0, V2m +1 >0, and when IVEA(-x-n, -ex), v2m <O,
V2m +-' < O. This together with (3.1) and (3.3) gives the desired inclusion,

(6) (2m+ 1, 2m, 2m-2). By using condition C 6 we find that Q2m+l::'/
((V2mJ-lz-I+V2m+I+W)EA(0,rr) when H'EA(-x, -cx+rr), V2m+I>O

and when wEA(-a-rr, -x), V2m + 1 <0. This together with (3,2) and (3.3)
gives the desired inclusion.

(7) (2m + 1, 2m - 1, 2m - 3). By using conditions Co and C 7 we
find that Q2m+ 1/(::.-1 + 1I'2m + V2m +t!V2m- d- 1

Z + w) E A( -7[,0) when ~i' E

A( - rr, 0). This together with (3.4) gives the desired inclusion.

(8) (2m + 1, 2m -1, 2m - 2). Let It' E A( -IT, 0). By using conditions
Co and C s we find that Q2m+IZ-I!(z-I+\V2m+V2m~I(V2m_l)-I:::+w)

belongs to A(-a, -IX+rr) when V2m_I>O, and to A(-,:X-7[, -x) when
1' 2m _ 1< 0. This together with (3.3) and (3.4) gives the desirec. inclusion. I
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We shall write Ll",,(=) for the intersection ()r~1 Llk(z). It follows from
Theorem 1 that Ll:yo (z) is either a single point or a closed disc.

4. THEOREM OF INVARIABILITY

As before let Kk'= 1 (1.k(Z)/fh(z) be a contractive Laurent fraction, with
approximants j~{Z)=Ak(Z)/Bk(Z).We shall always assume that Imz>O
(and 1m (> 0 when ( occurs). It will be convenient partly to replace the
functions Ak(z), Bk(z) by normalized functions M,,(z), N,,(z) in the
arguments that follow.

We introduce constants Q" as follows:

Q" = ll{ (- q;): i ~ n, i non-singular}.

For every k we define M"k' N"k' and also M"k+ [, N,,<+ [ when
nk + [ - nk = 2, as follows:
Fornk+[=2m+l, nk =2m:

M 2m(z) = (- V2m + l' Q2:,;+ 1 )1/2 AkCz), N 2m(z) = (- V 2m + 1 . Q;,,\ 1 )1/2 Bk(z).

(4.1 )

For nk + 1 =2m+ 1, nk =2m-l:

M 2m - I(Z) = (Qin;+ d1
/
2 Ak(z),

. -1 1'2N 2m _ 1(z) = (Q2m+l) I Bk{z),

(4.2)

I )1"N 2n,(Z)=(- V2m + 1
1- Zlv'2m_l(Z).

V 2m -l

For 11k+l=2m, nk =2m-l:

M 2m - 1(z) = (V2m . Q 2:,~ )1/2 Ak(z), N 2m _ I (Z) = (V 2m . Q2m[ )112 Bk(z). (4.3)

For 11k+[ = 2m, nk =2m-2:

(4.4)
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It can be verified by induction, using conditions Co-C8, that ail the
expressions under the square root sign are positive.

We shall need some formulas analogous to the classical Christoffel
DarbollX formula and related formulas.

We shall set i'k=1 when 11 k = 2m, llk_l=2m-l: h=-l when
IIk=2m+l, nk_l=2m; i'k=O when 11k = 2m, I1k_l=2m-2 and when
nk = 2m + 1, nk _ 1 = 2m - 1.

By multiplying the second of the recurrence relations (2.1) by ~;'kB k _ 1(~)

and subtracting the same expression with z and ~ interchanged we get

(ii Bk(z) Bk- 1(O - z)kBk(O Bk_l(.Z)

= [fik(Z) (n - fik(OZ)'kJ Bk_ 1(Z) Bk - 1{(l

+ C(k(Z) ()'kB k_ 1(() Bk_ 2(Z) -C(k(()Z)'kBk_l(Z) Bk- 2(()·

In the eight cases corresponding to Ll-L8 we then get (choosing
appropriate values of I'k):

(Bklz) Bk-l(~) - zBk(O B k_ 1(Z)

= v~m(( - z) Bk _ IlZ) B k - 1(O

-Q2m Z([(-lBk _ l(Z) Bk - 2(() - :-IBk_ dO Bk_ 2(Z)]. (4.5)

(Bk(z) Bk _ 1(() -zBk(O Bk_ 1(Z)

= V2m(( - z) B k _ 1(Z) Bk _ 1(()

-Q2m z([Bk _ 1(Z) Bk- 2(O - B k_ dO B Ac _ 2(Z)]. (4.6)

Bk(z) Bk - 1(O - Bk(() B k_ 1(Z)

-Q2m[Bk - 1(Z) Bk- 2(O - Bk_l(~l Bk_ 2(Z)]. (4.71

Bk(z) Bk - 1(O - Bk(O Bk_ l (.:)

(
V, 1 ')= ~·--;;-1 ((-z)B k _ l (zlB k _ 1(O

,V 2m - 2 Zt.,

- Q2mZ([z-1 Bk _l(Z) B k _ 2(n - (-1B k _ l(~) Bk _ ~(z)]. (4,8)

zBdz) Bk- 1(O -(Bk(O Bk _ L(Z)

= -V2m+ 1(( - Z) Bk _ 1(Z) Bk-l(O
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-qZm+ I[Bk_l(z) Bk-Z(O - Bk-I(O Bk_Z(z)]. (4.10)

Bk(z) Bk- 1(O - Bk(O Bk_l(z)

( Y)-I( VZm + 1
v 1)(Y )B ()B (V)= Zl, - -.- z~ + I, - Z k _ 1 Z k _ 1 ~

VZm _ 1

-qzm+I[Bk_l(z) Bk-Z(O-Bk- I«() Bk_Z(z)]. (4.11)

Bk(z) Bk-I(O - Bk(O Bk_ 1(Z)

= (ZO-1 (- VZm +1 + 1) «( -z) Bk_l(z) Bk_I(O
VZm - 1

-qzm + 1[( -IBk _ dz) Bk _ Z(O - Z-1 Bk-I(O Bk_Z(z)]. (4.12)

Iteration of the above equalities and use of (4.1}-(4.4) gives:
For nk = 2m, n k _ 1 = 2m - 1:

Zm-I
(Bk(z) Bk- 1(O -zBAO Bk_l(z) = «( -z) QZm I N;(z) Nlo. (4.13)

i=O

For nk = 2m, nk - I = 2m - 2:

2m-l

Bk(z) Bk-I(O - Bk(O Bk_l(z) = «( - z) QZm I N;(z) Nlo. (4.14)
;=0

For nk = 2m + 1, nk - 1 = 2m:

Zm
zBk(z) Bk-I(O - (BdO Bk_ 1(Z) = «( - z) QZm+l I N;(z) N;(o. (4.15)

;~O

For nk =2m+ 1, nk - 1 =2m-l:

Zm
Bdz) Bk-I(O - Bk(O Bk_l(z) = «( - z) QZm+ 1 L N;(z) N;(o. (4.16)

i=O

By using an analogous procedure to both of the formulas (2.1) we obtain

(YkAk_I(O Bk(z) - zYkAk(z) Bk-I(O

= [/h(z) (i'k - Pk(O ZYk] Bk_ I(Z) Ak -I (0

= ak(z) (Yk Ak_I(O Bk_Z(z) - ak(O ZYk Bk_l(z) Ak-Z(O.
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Again by iteration and use of (4.1)-(4.4) we get the following formulas:
For Ilk = 2m, 11 k- I=2m-1:

2m-l

=((-Z)'Q2m' I A((.:)N;(()+Q2'"L. (4.17)
i=1

For nk =2m, I1 k- 1 =2m-2:

2m -I

=((-Z)'Q2m' I M;lz) N i(()+ Q2mZ, (4.18)
1=1

2m
=((-Z)'Q2m+I' I M;(z)N/(()+Q2m+I Z, (4.19)

i=1

For I1 k =2m+ 1, 11k-I =2m-1:

2rn

=((-Z)'Q2m+I' I j\.·[;(zlN)()+Q2m+l'::· 1.4.201
[=1

In particular we have, when we set Dk(z)=Bk(z)Ak_dz)
Ak(z) Bk_l(z) (cf. [9, Lemma 1J):

Dk(z) = Q2m when 11k = 2m, I1 k - 1 = 2m -1, (4.21 )

Dk(z) = Q2m' Z when 11 k = 2m, llk-l = 2m-2, (4.22)

Dk(z)=Q2m+1 when I1 k =2m+ 1, nk_1 =2m, (4.23)

D k(z)=Q2m+1 -;:.-1 when nk =2m+ 1, I1 k - 1=2m-1. (4.24;

By multiplying (4.17)-(4.20) by Bk(z) and subtracting (4.13)-(4.161
multiplied by Ak(z), and using the definitions of MI!' N" and (4.21)-(4.24)
we obtain

2m - 1

= (-1(( - z) I [N2m(O M;(O - M 2m(O N;((}J . N;(z), (4.25:\
i=O
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2m
=Z-I(Z-O L [N2m+dOM;(()-M2m+I(ONi(OJ·Ni(Z).

i~O

Now consider the transformation

(4.26)

It follows from Theorem 1 that this transformation maps the real axis onto
rk(z) (recall that rk = 1 when nk = 2m, nk_ 1 = 2m - 1; I'k = -1 when
nk=2m+l, nk_l=2m; rk=O when nk=2m, nk_ I =2m-2 and when
nk = 2m + 1, nk _ 1 = 2m - 1). Hence it can be seen, using general properties
of linear fractional transformations, that the radius Sk(Z) of the disc Llk(z)
is given by

(- _I zi'kAk(z)Bk_l(z)-zl'kAk_l(z)Bdz) 1
Pk ,,)- (z*)YkBk(Z)Bk_l(Z*)-Zi'kBk_I(Z)Bk(Z*) .

(4.27)

(Here z* denotes the complex conjugate of z.) See, e.g., [lJ; cr. also the
argument of [2J which utilizes an idea in [14J).

THEOREM 3. The radius Pk(Z) of Lldz) can be expressed as

{ ~-I }-l
Pk(Z) = Iz - z*I' ,~o IN,(zW

Proof The result follows by substitution from the formulas
(4.21)--(4.24) in the numerator and from the formulas (4.13)-(4.16) in the
denominator of (4.27). I

The radius p(z) of LI ~(z) is obviously given by p(z) = lim k ~ ~ Pk(Z). So it
follows from Theorem 3 that LI ex; (z) reduces to a single point if and only if
Lf: I INi (z)1 2 =oo.

Now consider the transformation

This transformation gives rise to a nested sequence {LI~(z)} of discs with
intersection LI~(z) which is a single point when Lloc(z) is a single point and
a disc when LI~(z) is a disc. The transition from Llk(z) to LI~(z) is made by
replacing Adz) by Bk(z) and Bk(z) by Ak(z). Thus the radius p~(z) of LI~(z)
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is given by p~(z)= {lz-z*I'2::;'~(/ IM;(z)1 2 }-i. It follows that A'x(.:-), and
hence A x(z), reduces to a single point if and only if L~o IM;izW = 'Y:.!.

THEOREM 4 (Theorem of Invariability). If LL,:(~) is a disc for some (.
then A x (z) is a disc for every z.

Proof We sketch an argument which is practically identical with that
given in [2J for APT-fractions. An alternative proof can be obtained by
slightly modifying the proof of Theorem 3.5 in [13J, which builds on [1].

Assume that A x (() is a disc. Then

·x

L jM;(OI2< co,
1~1

By elementary inequalities we get

x

L INi(()1
2 < CI:;,.

;~ 1

n-l i-I

L L INAO M j (() - M i(() N/()1 2

l~ 1 j~ 1

(4.28)

It follows from a Lemma of Perron [14, p. 71 J that when Z n is given
recursively by Zn = 2::;',,:} an,iZ; + C;, then

Formulas (4.25), (4.26) show that if zn=N,,(z), cn=N,,((), G;,j=
(-1(( _ .:)[NAO Mi() - N/O Ml()J, resp. a;.j= .:-I(Z - n[N;(O MiO
Ni0 A'll0 J, then the recursion relation above is satisfied. By using (4.28)
and (4.29) we find that

From this we conclude that the series L?'~o IllT;(.:W converges to a finite
value, and so Ax (z) is a disc. I
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5. THEOREM OF PARTIAL FRACTION DECOMPOSITION

We shall write Ak(z, r) for the expression Ak(z) + rzYkAk_I(Z) and
Bk(z,r) for the expression Bk(z) + rzYkBk_I(Z), rER. We shall call the
function z--+Fk(z, r)=Ak(z, r)/Bk(z, r) a generalized approximant for the
continued fraction Kt~ I IY.k(z)/lh(z), when r E R. It follows from Section 2
that for all values of r except one we may write Bk(z, r) = Il2m +I(Z, r)/zm+ I

when nk = 2m + 1, Bk(z, r) = Il2m(z, r )lzm when nk = 2m. Here Ilr(z, r) is a
polynomial in z of degree r. Consequently (except for one value of r)
Bk(z, r) (as a function of z) has exactly nk zeros, counted with multiplicity.
Furthermore z = 0 is not a zero of Bk(z, r). For z # 0 the transformations
w --+ Sk(Z, w) and therefore the transformations 11' --+ Sk(Z, 11') are non
singular. Hence there can be no w such that Adz)+wAk_l(z)=O and
Bk(z)+wBk_l(z)=O. Consequently Ak(Z)+rzYkAk_I(Z) and Bk(z)+
rzYkBk_I(Z) are not both zero for the same value of z.

By utilizing the results of Section 3 we shall prove that Bk(z, r) has nk
simple real zeros and that z -IFk(z, r) has partial fraction decomposition
with only positive coefficients.

THEOREM 5 (Theorem of Partial Fraction Decomposition). The
denominator Bk(z, r) has nk simple zeros t~k)(r), ..., t),:J(r) on the real axis.
The generalized approximant Fk(z, r) has partial fraction decomposition of
the form

(5.1 )

where Ak,v(r) > 0 for v = 1, ..., nk'

Proof We note that if z is a zero of Bk(z, r) then also z* is a zero of
Bk(z, r). So if not all the zeros are real there exist zeros in the upper half
plane. It follows from the construction of the discs Ak(Z) (for 1m z > 0) that
Sk(Z,rzl'k)EAk(z). Also oottAk(z) for k=I,2, .... Thus Bk(z,r)o6O for
1m Z > 0, and consequently all zeros of Bk(z, r) are real. We write these
zeros (each counted once) as t l , ... , t r •

Since z-IFk(z, r) can be written as a rational function where the
denominator is a polynomial of degree nk while the numerator is a
polynomial of degree at most nk - 1 (see Section 2) and where numerator
and denominator have no common zeros, we may write

r ( C C)-IF ( ) _ " v, I + + v,m,
Z k z, r - i..J -~-- . . . mfJ '

v=1 (.. +tv) (z+t v )
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For points near t", the dominating term in this sum is c".",j(:::+l,jln,.
From the mapping properties of the transformations I\' -t Sk(Z, w) we know
that ImzFk(z,r»O when Imz>O. Consequently m" cannot be greater
than 1 and Cv• 1 must be positive. (For details, cr. the argument concerning
APT-fractions in [2].)

From this the desired result follows. I
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